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phosphoranes.1'16 Nevertheless it is worth noting that at 
this point characteristic nmr parameters have not been es­
tablished for the square pyramidal phosphorane geome­
try.17 
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Synthesis of a Triazole Homo-C-nucleoside 

Sir: 

With pseudouridine1 as its first member, the group of 
compounds known as C-nucleosides has steadily increased.2 

Each of the compounds has biological properties of consid­
erable importance and interest. Although a variety of syn­
theses are reported, practically all have been partial, involv­
ing D-ribose or some other sugar in some way.3 We now 
wish to describe a stereospecific total synthesis approach, 
independent of natural ribose, which has furnished a new 
homo-C-nucleoside, and which promises to open a way to 
other related compounds. 

The starting point is the readily accessible tetrachlorobi-
cyclo compound I,4 which on reduction with lithium alumi­
num hydride in the presence of lithium hydride loses three 
of its four chloro groups to give 3-chloro-8-oxabicyclo-
[3.2.1]octa-2,6-diene (2)5 in 80% yield. The expectation 
that the double bond in 2 that carries the chloro group 
(A2(3)) would be less readily attacked by electrophilic re­
agents than the unsubstituted double bond (A6(7)) was real­
ized when diolefin 2 was found to react smoothly and selec­
tively with osmium tetroxide-hydrogen peroxide and ace­
tone to give the desired glycol (in the form of its isopropyli-
dene derivative 3) as the only product in 70% yield (Scheme 

I). 
We have formulated adduct 3 with the oxygen substitu-

ents cis exo rather than cis endo for two reasons. First, ex­
amination of a Dreiding scale model of substrate 2 reveals 
that the exo side of the double bond offers more room for 
approach of the bulky reagent than the endo side. Second, a 
model of exo compound 3 has a dihedral angle between H-6 
and the bridgehead H-5 measuring close to 90°. The same 
is true of the dihedral angle between H-7 and the bridge­
head H-I. Accordingly, there should be minimal nuclear 
magnetic resonance coupling between H-5 and -6 as well as 
between H-I and -7,6 so that the quartet expected from the 
spin-spin coupled cis protons at positions 6 and 7 should ap-

Scheme I 
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pear with very little if any additional splitting. The endo 
isomer of 3, on the other hand, has dihedral angles for H-5, 
-6 and for H-7, -1 approximating 40°. Consequently consid­
erable bridgehead-proton coupling is predicted with a corre­
spondingly complex H-6, -7 pattern. Actually the nuclear 
magnetic resonance spectrum of the isopropylidene deriva­
tive 3 presents the signals for H-6 and -7 as an almost un­
perturbed, two-proton AB quartet. Accordingly the exo as­
signment is indicated. 

Bicyclo compound 3, treated with ozone under conditions 
such that the acid chloride grouping developed by ozonol-
ysis reacts directly with methanol, forms the corresponding 
aldehyde ester. Without isolation, this is reduced with sodi­
um borohydride to generate the methyl ester of (2,3-O-iso-
propylidene-/3-ribofuranosyl)acetic acid (4) in 72% yield 
from 3. A detailed nuclear magnetic resonance examination 
of this compound at 300 MHz gives results wholly consis­
tent with formulation 4. The ester is readily hydrolyzed 
(over 90%) to (2,3-0- isopropylidene-/3-ribofuranosyl)acetic 
acid or to /3-ribosylacetic acid itself. Acetic anhydride in hot 
pyridine cyclizes the isopropylidene acetic acid derivative to 
lactone 5 (77%),7 and this with aminoguanidine bicarbon­
ate8 gives the 3-amino-l,2,4-triazole 6 (80%). Removing 
the protective group furnishes the free nucleoside 7 as the 
hydrochloride and thereby completes the synthesis. So far 
as we could determine this represents a new kind of nucleo­
side, for which we suggest the name, homo-C-nucleoside by 
extension from the name for the homonucleosides, e.g., 
homouridine.9 

The enolate of lactone 5 has proved to be a rich source of 
potentially useful intermediates. Utilizing this lactone eno­
late, we have succeeded in substituting the following groups 
on the position a to the lactone carbonyl: bromo, phenyl-
mercapto, hydroxymethylene, carbomethoxy, and ./V-car-
bethoxythiocarbamyl. We anticipate that this general ap­
proach will provide a flexible general synthesis of C-nu-
cleosides, homo-C-nucleosides, and related biologically im­
portant compounds. Work with the above mentioned deriv­
atives as well as with others will be continued. 
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Photochemically Induced Olefin Metathesis by 
Transition Metal Complex. I. The 
Intermediacy of W(CO)5Cl 

Sir: 

Although different structures have been proposed for the 
key intermediate in olefin metathesis,1'2 it is generally 
agreed that the disubstituted complex must have two olefin 
molecules in a cis relationship. As demonstrated by Stroh-
meier3 and recently by Wrighton,4 the photochemically in­
duced substitution of group VI hexacarbonyl, M(CO)6, in­
volves a first step leading to a short-lived intermediate, 
M(CO)s, which reacts rapidly with an n or i donor, D, to 
give mono- and disubstituted compounds M(CO)5 D and 
M(CO)4 D2, but it has been shown in the case of olefin TT 
donors in n-hexane that the disubstituted compound has 
trans geometry.5 Metathesis cannot therefore take place. 

We wish now to report that olefin metathesis can be in­
duced by uv irradiation of a transition metal complex in the 
presence of a suitable solvent, carbon tetrachloride. 

Thus when a solution of trans-2-pentene and tungsten 
hexacarbonyl (20 mol per mole, excess olefin) is irradiated 
in CCI4 at 25-50°, 2-butene and 3-hexene are obtained 
mainly in the trans form (?/w«-2-Butene:m-2-Butene, 4:2) 
with a conversion ratio of about 50%, regardless of the tem­
perature. The conversion ratio depends, however, slightly 
upon the olefin : W(CO)6 ratio, falling from 59 to 50% as 
the molar ratio is raised from 1:1 to 20:1 (excess olefin). 
When CCI4 is replaced by «-hexane no olefin metathesis is 
observed. 

/ M e *,ca / E t / M e 

2 z=7 z=7 + z=7 

Et Et Me 
The most efficient wavelength for this reaction is at 

about 335 nm, which corresponds to an 'A | g -»• 1Ti8 transi­
tion in the tungsten hexacarbonyl.6 

Addition of trans- 2-pentene in the dark to a previously 
irradiated W(CO)6-CCU solution leads also to metathesis; 
the metathesis reaction itself is therefore not purely photo­
chemical. The aim of this work was to investigate the first 
photochemical step of the reaction. 

Irradiation of W(CO)6 in CCl4 or in n- hexane, in the ab­
sence of olefins, gives rise to a yellow coloration, which is 
characteristic of the formation of the unstable W(CO)5 

species, whose absorption maximum lies at 410 nm.7 This 
highly reactive species may then undergo reaction with the 
solvent. 

The ir spectrum of the photoreaction product in «-hexane 
shows a symmetrical band at 373 cm - 1 (W-C vibration), a 
strong band at 1982 c m - 1 (CO vibration), and a shoulder 
at 1950 c m - 1 (13CO).8 In the absence of any donor the 
W(CO)5 reacts with CO and reverts to W(CO)6 .7 

The ir spectra of W(CO)6 in CCI4 before and after uv ir­
radiation reveal three main modifications as shown in Fig­
ure 1. 
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